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0.1 Abstract

Explosion monitoring requires the technical capability to screen geophysical signatures
of chemical explosions from those attributable to natural and non-threatening sources,
like routine human activity or natural processes. This is particularly challenging at low
signal strengths or large standoff distances, as standard detection methods that use single
phenomenologies can produce marginal or absent detections. We addressed this challenge
by recording coincident acoustic, seismic and radio frequency waveform signatures from
high explosive experiments to determine how these signatures could be combined to increase
explosion-screening capability. We thereby added real, observed noise to each signature’s
data stream and subsequently found that even highly sensitive correlation detectors missed
detections when they were applied separately. By adding these temporally coincident
statistics through Fisher’s combined probability test, we increased our explosion-waveform
screening capability. This resulting tests gave high-probability detections with zero false
alarms. Further, including such fusion methods in routine monitoring operations will likely
provide increased deterrence against evasive explosive testing.

2



1.1 Introduction

Explosions produce waveform signatures through several distinct geophysical phenomenolo-
gies as sources of electromagnetic, acoustic, and seismic radiation. The detection and
identification of these signals can thereby provide evidence of explosive events that are
otherwise unobservable. Such signatures are therefore used to discriminate natural geo-
physical sources (e.g., lightning) from those attributable to clandestine weapon testing or
demolition activity, in operations supporting both nuclear detonation monitoring and ac-
tive explosives mitigation. This discrimination procedure often requires processing noisy,
digital geophysical data that is overwhelmingly comprised of natural and non-threatening
signals. It is therefore important to develop statistically robust methods to reliably detect
and screen explosion-triggered waveforms from such natural signals that can be evaluated
through controlled experiments.

Previous work in explosion detection has largely focused on utilizing radio-frequency (RF)
[21, 15], acoustic [36, 35] or seismic [22, 12] emission signatures separately. However, as ex-
plosion monitoring missions continually expand to target small, evasively conducted tests,
fusing signals from separate phenomenologies will likely become crucial for source discrimi-
nation [3, 24]. This is particularly significant in scenarios whereby single phenomenological
waveforms yield marginal or absent detections. For example, acoustic signals generated
by above ground explosions may be undetectable at certain observation ranges because
their propagation paths are determined by temporally variable atmospheric structure [4].
Associated seismic signals may also be difficult to identify if an explosion’s air shock trans-
mits only weakly into the ground, or preferentially excites high frequency energy (≥ 25
Hz) that scatters and attenuates rapidly with propagation distance from the source (e.g.,
[25]). Further, RF emissions that are also produced by such explosions occupy a heavily
cluttered signal environment that is largely dominated by broadcast and communications
signals (∼10 kHz-1 GHz) which interfere with these explosion-generated waveforms [15].
Cumulatively, these factors comprise practical challenges for detecting small explosions
that become more serious at smaller yields and larger standoff distances [8]. Additional
research is necessary to assess if individual detection statistics, computed from single phe-
nomenologies, may be combined to identify waveforms from explosions that are otherwise
indistinguishable from background signal clutter and noise.

To study this problem, we collected electric, magnetic, acoustic and seismic records dur-
ing parametric testing of solid explosives at Los Alamos National Laboratory (LANL). Our
analyses focus on using correlation detectors to identify low amplitude waveforms generated
by an above ground explosion in a noisy, cluttered signal environment. By fusing multiple
detection statistics from all three phenomenologies through Fisher’s combined probability
test [27], we identify explosive sources otherwise undetectable even with optimal match
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filtering operations. While previous work on near-surface explosions includes analyses of
seismo-acoustic signals, almost no work to date has been done to include RF. This paper
thereby demonstrates a semi-autonomous capability to identify explosions by including
additional physical data underutilized by single signature correlation detectors.
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1.2 Experimental Description

A series of 68 high explosive (HE) experiments (shots) were conducted at LANL using
caseless charges of solid, bare Composition B in multiple configurations over a period of
3 weeks. Certain shot-parameters were controlled relative to reference tests during these
experiments to study their influence on explosion signature variability [30]. These parame-
ters included variable heights-of-burst, HE mass, HE shape, center versus surface ignition,
substrate material, and explosive asymmetry. Several explosion phenomenologies were
recorded during each shot, including acoustic/infrasound, optical, RF, and seismic emis-
sions. Basic meteorological data was additionally collected from a nearby MET-station to
monitor changes in the propagation media [28]. Because this paper focuses on the seismic,
infrasound and RF data, we omit details regarding the collection of other signatures.

Electromagnetic data were recorded using 3 antennae collocated at a 113 meter slant
distance from a fixed shot pit (Figure 1.1, top). These antennae measured the vertical
component of the electric field (E) in high (20 MHz - 1 GHz) and low (2 MHz - 250 MHz)
bands, while the magnetic field (B) was recorded at a 45◦ orientation from the E antennae
in a low band (2 MHz - 70 MHz). Data logging was initiated by a capacitive discharge unit
(CDU) triggering system and provided up to 400 msec data records, half of which measured
pre-detonation background emissions. Coincident, high-frame rate video was recorded of
each shot to visually document features of the fireball that could explain RF details (e.g.
HE product ejecta, ground contact, fireball asymmetry).

Acoustic and seismic data were collected from collocated instruments a ∼ 1km horiztonal
distance from ground zero at the Lower Slobbovia site (Figure 1.1, bottom). Acoustic
data were recorded using a New Mexico Tech. infrasound sensor with a passband of 0.01-
40 Hz, sampling at 1 kHz and logging to a RT130 digitizer and hard drive (described in
[29]). Seismic data were recorded using a three-component Trillium Compact sensor with
a 8 · 10−3 Hz corner frequency, also sampling at 1 kHz and logging to the same RT130
digitizer and hard drive. Data time-stamps for both sensors were obtained from a local
GPS antenna.

All experiments took place over/under dry sand, poultry netting (chicken wire) or a con-
crete pad. In this paper, we focus exclusively on two shots detonated above dry sand. The
first shot consisted of a 4” cylindrical charge detonated at a 4m HOB on 05/13/2013, 21:50
UTC. The second shot consisted of a 8” cylindrical charge detonated at a 1m HOB on the
following day (05/14/2013) at 18:25 UTC.
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infrasound recording sites.
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1.3 Geophysical Background

We summarize the geophysical processes of explosion-triggered waveform emission through
the three phenomenologies below. Each respective signature description is self contained,
and ordered by time of generation after HE detonation.

1.3.1 Electromagnetic Emissions

RF emissions from high explosives are related in timing and amplitude to physical prop-
erties of the explosive products, shock waves, and surroundings [21, 15, 10]. The explosion
RF emission is usually characterized by self-similar, variable amplitude impulses with log-
spaced peak-to-peak separation time (Figure 1.2). Analyses of time series and videos from
68 experiments performed at LANL (Section 1.2) reveal that the emissions from an un-
cased explosive are produced by distinct mechanisms in four broadly defined time intervals
(10µsec - 100+ µsec). The first burst of RF emission (10-70 µsec; unrelated to the electric
detonator) is associated with shock heating and ionization of the surrounding air. The
second burst (70 µsec - 0.5 ms) coincides with the fireball resulting from combustion of
explosive byproducts as they mix with air. A third interval of emission may occur when the
shockwave reflects from the ground and re-heats the waning fireball (this may not always
be observed, and will have timing dependent on height of burst). Direct shorting of ionized
byproducts may also cause intense RF emission in the presence of a conductive ground
plane [7]. Except for these conditions, the period from 0.5 ms to several 10s of milliseconds
has little if any RF emission. A final period of emission starts around 25 ms and can last
for 100s of milliseconds. This is evidently caused by pickup of environmental dust and
subsequent collisional charging/discharging.

1.3.2 Acoustic and Infrasound Emissions

Explosions in air create large changes in local pressure over very short times, leading to
the generation of shock waves that decay into sound (acoustic waves). The pressurized
volume of gas within an explosively-driven air shock expands supersonically, resulting in a
propagating pressure discontinuity (shock front) where the highly pressurized (and heated)
air meets the ambient atmosphere [23]. As the pressure decays due to the increasing vol-
ume over which the energy is contained, the disturbance transitions to an acoustic wave of
much smaller amplitude and leaves the surrounding medium unchanged. Characteristics of
the shock wave and subsequent acoustic wave generated by the explosive-source depend on
the explosive charge properties, in addition to the air through which the wave propagates.
The low-frequency component of these signals (≤ 20Hz) are conventionally described as
infrasound [2].
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Figure 1.2: Electric and magnetic radio-frequency (RF) waveforms recorded during the
detonation of an 8” cylindrical charge at a 1m HoB. All data are bandpass filtered between
2 and 156 MHz. Top: Emission features from zero to one msec after-detonation include
emissions triggered by the detonation shock (blue markers), interaction of explosion by-
products (black/white markers), and ostensibly fireball-ground contact; little signal is seen
after 1msec (not shown). The red border indicates a fan. Bottom: A subset of repeated,
pseudo-similar pulses from Top within the identified RF fan.
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Explosively generated acoustic signals are recorded from two primary sources at different
times after detonation. The initial acoustic arrival is driven by elastic ground displacement
and produces a relatively weak signal that arrives coincidentally with ground-coupled seis-
mic waves (Figure 1.3) [24]. The second source is the explosively-driven air shock, which
develops into a broadband acoustic wave and produces much larger amplitudes compared
with the first arrivals [2].

1.3.3 Seismic Emissions

Above-ground explosions of sufficient energy to induce ground cratering generate inelastic
deformation that results in both direct and transverse displacement near ground zero [31].
This impulsive loading produces near discontinuous changes in stress that propagate out-
ward as shock waves at super-elastic speeds [9]. The amplitude of these shocks decay and
broaden through mechanical dissipation after a materially-dependent propagation distance
(i.e., the elastic radius) and thereafter propagate as body waves (compressional and shear
waves) and surface waves (e.g., ground roll). Seismometers record these ground-transmitted
elastic waves as well as the following acoustic waves produced by air shocks. This includes
ground impact from ballistic HE products traveling faster than the air shock, and cou-
pled seismic-air waves arising from the feedback of ground-motion to acoustic energy [24].
The initial seismic arrivals generally produce smaller waveform amplitudes relative to the
later arriving acoustic-signals, which appear coincident with the waveform recorded by the
(collocated) infrasound receiver. The tails of these seismic waveforms are rich in scattered
energy (coda) that extends over temporal durations that are long relative to the both the
source time-function of the explosion and the associated infrasound waveforms. At least
some of this scattered energy originates from ballistic material thrown out during crater-
ing and impacting the ground. Unlike the direct arrivals, this energy is largely incoherent
between the three recording channels of the seismometer (Figure 1.4).
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Figure 1.3: Vertical seismic velocity and infrasound waveforms recorded during the det-
onation of an 8” cylindrical charge at a 1m HoB, with arbitrary time origin. The small
amplitude acoustic pulses appearing after the first arrivals and before the air wave are
driven by seismic-acoustic feedback at the ground surface as described in Kitov et. al. [24].
The other labeled features are described in the text (Section 1.3.2).
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Figure 1.4: From top to bottom: east, north and vertical component seismic waveforms
recorded during the detonation of an 8” cylindrical charge at a 1m HoB and aligned at
maximum correlation (= 0.39) time delay with waveforms recorded during the detonation
of a 4” cylindrical charge at a 4m HoB. The waveform produced by the 8” charge is zero-
weighted where data amplitudes fall beyond a certain SNR value. Significant correlation
between the waveform records of these two events requires waveform similarity and match-
ing differential arrival times of phase segments. Vertical component waveforms exhibit the
poorest cross-correlation, and are most sensitive to differences in charge HoB.
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1.4 Methodology Overview

We summarize our data analyses in two self-contained sections. In Section 1.4.1, we derive
a match-filtering detection statistic for identifying semi-similar, explosion triggered wave-
forms. We then demonstrate a process for combining the p-values from each associated
statistic’s estimated null distribution through Fisher’s combined probability test (Section
1.4.2).

We first identified signatures of above ground explosions by applying multichannel cor-
relation detectors to three measured phenomenologies in our data. Our approach was to
select template waveforms recorded from reference explosions to compare against target
data recording similar shots. To assemble these data sets, we primarily focused on two
distinct experiments that included (1) a 4” cylindrical charge detonated at a 4m HoB and
(2) an 8” cylindrical charge detonated at a 1m HoB, each conducted at the Minie shot
pit (Figure 1.1). These data included 1000 sec of seismic and acoustic time series and
500 msec of continuous low-band RF data. Waveforms from the 8” charge were selected
as reference/template data to compare against the 4” charge target data, which recorded
the minimum amplitude explosion signals measured among the experiments. A preliminary
comparison of these data demonstrated a significant waveform correlation between each re-
spective signature (seismic data illustrated in Figure 1.5). To further reduce the amplitude
of each target signature to < 0 dB of noise and challenge waveform detection, we added
10 randomly selected, commensurate records of scaled pre-shot noise to each time series
recording the 4” charge (Figure 1.6) . We then digitally processed these noise-contaminated
data using our correlation detectors to identify waveforms produced by the explosion (Sec-
tion 1.4.1). Significant correlation between any two of our multi-channel data streams
(e.g., seismic) required similarity in differential arrival times of pulse features within the
event records (Figure 1.4). In contrast, seismic signals from two identical, hypothetical
sources with different standoff distances would produce greater time delay between body
and surface waves; sources at different azimuths would produce different energy partition-
ing between components of motion/propagation. Each of these effects degrade correlation
between waveforms emitted from distinctly located sources. Therefore, our correlation
detectors combined the detection, location and identification problems.

1.4.1 Correlation Detection: Theory and Computation

To automatically screen explosive signatures of HE tests from ambient noise and clutter,
we developed phenomenology-specific multi-channel correlation detectors (matched flters).
These detectors employ “template” waveforms recorded from reference events to scan mul-
tiple data streams for correlated signals indicative of similar emission sources [16, 12, 6, 34].
During each scanning operation, a detection statistic is computed from these data using
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Figure 1.5: Waveforms recorded during the detonation of an 8” cylindrical charge at a
1m HoB. Top: East, north and vertical component seismic (blue) and acoustic/infrasound
data (red), recorded over 50 seconds at station LOSL and bandpass filtered between 4 and
20 Hz. The initial waveform arrivals visible at ∼ 27 seconds record low amplitude, ground
transmitted body and surface waves; the larger amplitude peaks at ∼ 34 seconds record the
air wave. Bottom: High gain, low sample rate electric and magnetic data recorded over
0.3 msec following detonation and bandpass filtered between 2 and 156 MHz. Gray-colored
data illustrate the template waveforms used in the associated correlation detector. The
repeating pulses that appear after 0.25 msec comprise fan structures commonly observed
during chemical explosions. Gray data indicate pulse segments within this fan that are
used as templates in a correlation detector.
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Figure 1.6: Waveforms recorded during the detonation of a 4” cylindrical charge at a
4m HoB, shown with observed noise. Top: East, north and vertical component seismic
(blue) and infrasound data (red), recorded over 1000 seconds at station LOSL and bandpass
filtered between 4 and 20 Hz. Gray data show 10 randomly selected commensurate windows
of pre-shot data plotted on top of each other. These noise data were amplified ∼ 15× and
added to the original data to reduce the relative signal power to < 0 dB. Bottom: High
gain, low sample rate electric and magnetic data recorded 0.38 msec following detonation.
Superimposed gray data again show 10 randomly selected commensurate windows of pre-
shot data. These noise data were scaled by ∼ 1

2 and added to the original data to reduce
the relative RF signal power to that of the seismic and infrasound (<0 dB).
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a statistical hypothesis test and compared to a threshold to evaluate the presence of a
target waveform [20]. The significance of this threshold and the detector’s performance
depend on the data stream noise environment and the waveform signal complexity [37, 17].
Performance is also degraded by noise within this template, and any mismatch it has with
the underlying target waveform [5, Appendix A]. However, if correlation templates have
sufficiently high SNR and do match their targets, such detectors provide a demonstrably
optimal detection capability [20, page 133].

Our data sets included L channel multi-sample rate shot records of wavefields x (t) =
[x1 (t) , x2 (t) , · · · , xL (t)] respectively sampled at intervals ∆t1, ∆t2, · · · , ∆tL and recorded
over time T , at various gains. While our data set includes 1 ≤ L ≤ 3, we present our method
for any number of channels. We prepared these data for detection by pre-processing the
seismic and acoustic data over 4− 20 Hz and the RF data over 2− 156 MHz, using 4-pole,
minimum phase Butterworth filters (Figure 1.5); because our filter width restricted the
acoustic data to infrasound-band frequencies, we use these terms interchangeably hereon.
If a given signature’s record included multi-sample rate data (e.g., RF), we synchronized
the respective time series to a uniform sample rate ∆t using an interpolation/upsampling
scheme and arranged the resultant, commensurate vectors into column matrices. An L-
channel signal is thereby expressed as x = [x1,x2, · · · , xL] ∈ RN×L:

x =


x1 (0) x2 (0) · · · xL (0)
x1 (∆t) x2 (∆t) · · · xL (∆t)

...
...

...
...

x1 ((N − 1) ·∆t) x2 ((N − 1) ·∆t) · · · xL ((N − 1) ·∆t)

 , (1.1)

where T = N ·∆t. The template waveforms containing the canonical explosion signatures
were similarly pre-processed, upsampled, then Hamming tapered and arranged to form a
data matrix u = [u1,u2, · · · , uL] ∈ RN×L.

We consider two competing signal models for each data stream x: waveform absent versus
waveform present. Under the waveform-absent/null hypothesisH0, the post-processed data
contain noise n0 that is parameterized by variance σ2. Under the alternative/waveform
present hypothesis H1, the data contain a sum of target signals Au and noise n1, where A
is unknown and n1 is also parameterized by σ2. In both cases, we assume that the data are
drawn from Gaussian random processes, so that digitized samples of the noise distribute
as nk ∼ N

(
0, σ2I

)
, where n ∈ RN×L and I ∈ RLN×LN (k = 0, 1). We also assume that

σ2 does not significantly change within each detection window, so that this noise is statis-
tically stationary over periods equal to the temporal width of the template (over N · ∆t
seconds). We state these competing hypotheses for a signal signature as:

H0 : x = n0 ∼ N
(
0, σ2I

)
(noise present, σ unknown)

H1 : x = n1 +Au ∼ N
(
Au, σ2I

)
(noisy target present, A, σ unknown),

(1.2)
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where each signature has a distinct pair of PDFs. In contrast to this model, our data
were temporally correlated and non-uniform between channels. We accommodate for this
correlation structure by parameterizing the probability density functions (PDFs) under
each hypothesis with a scalar NE that corrects for the effective number of statistically in-
dependent samples in x; we discuss estimating NE later. The PDFs under these respective
hypothesis are then:

p0 (x; H0) =
1

(2πσ2)
1
2
·NE

exp

[
−
||x||2F
2πσ2

]
p1 (x; H1) =

1

(2πσ2)
1
2
·NE

exp

[
−
||x−Au||2F

2πσ2

]
,

(1.3)

where ||x||F =
√

tr (xTx) denotes the Frobenius norm, which sums the two-norm of the
data matrix columns.

We derive a detection statistic from the PDFs in Equation 1.3 using a generalized like-
lihood ratio (GLR) that includes maximum likelihood estimates for the data variances and
unknown waveform amplitude. This ratio is tested against a threshold η to determine the
absence/presence of a target waveform:

s (x) =

max
A, σ1
{ p1 (x; H1) }

max
σ0
{ p0 (x; H0) }

H1

≷
H0

η, (1.4)

where the maximum likelihood estimates are:

σ̂0 =
||x||2F
NE

Â =
〈x,u〉F
||u||2F

σ̂1 =
||x− Â u||2F

NE
,

(1.5)

and where 〈x,u〉F = tr
(
xTu

)
denotes the Frobenius inner product. Substituting the

quantities from Equation 1.5 into Equation 1.4 gives the decision rule:

s (x) =
〈x,u〉F
||u||F ||x||F

H1

≷
H0

η. (1.6)

Mean channel correlation is often used as an alternative to s (x) in Equation 1.6 for multi-
channel correlation. In this alternative formulation, correlation statistics are computed for
each channel and then coherently averaged. However, this computation implicitly assumes
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that the amplitude scaling (A) for a vector waveform can differ among the channels at
a given sensor. This multiple scaling among distinct components of motion or propaga-
tion implies dissimilar template-target source mechanisms. We therefore prefer our more
restrictive maximum likelihood approach, which assumes uniform scaling of the source
mechanism among the components of motion.

Equation 1.6 represents the action of the detector in a given N × L sample detection
window. To efficiently implement Equation 1.6 on many such windows, we scanned u
against much longer, M -sample data streams x ∈ RM×L as follows. First, we zero-padded
u by concatenating its rows with a matrix of zeros 0 ∈ R(M−N)×L to construct an “op-
erational” template uM = [u ; 0] ∈ RM×L that dimensionally matched the data stream
and was therefore suitable for computation. Next, we vectorized the template and data
stream signals to avoid wasteful calculation of off-diagonal matrix products, in terms like
〈x,uM 〉F . To do so, we multiplexed the data via the rule x

[
L(i−1)+j

]
= xij , so that each

multichannel signal was reshaped by placing samples for the same time index along distinct
channels into consecutive rows of a vector. We then computed s (x) at single sample-shifts

of the detection window by cross correlating
uM

||u||F
against x in the frequency domain, and

performing data stream normalization in the time domain. Finally, to obtain detections
using s (x), we established an acceptable false alarm probability of 10−8 with the Neyman
Pearson criteria [20], for all three signatures, and defined a threshold for event declaration
η:

10−8 = PrFA =

∫ 1

η
p0 (s ; H0) ds (1.7)

We computed the associated probability of detecting a target waveform by integrating
p1 (s ; H1) over the acceptance region established by PrFA:

PrD =

∫ 1

η
p1 (s ; H1) ds, (1.8)

We reemphasize that each signature has a distinct pair of PDFs and associated detector
performance.

To explicitly compute the detection threshold η, evaluate the probabilities in Equations
1.7 - 1.8, and compute p-values (Section 1.4.2), the distribution functions pk (s ; Hk) (k =
0, 1) must be approximately known. We determine these PDFs from s2 (x), which follows
a central Beta distribution in the presence of only noise, and a noncentral Beta distribu-
tion in the presence of a combined waveform and noise [17]. We respectively denote the

associated PDFs for s2 (x) as B (s; 0, NE) and B
(
s; A2

σ2 , NE

)
and perform a functional
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transformation to obtain:

p0 (s ; H0) = |s| ·
[
B
(
s2; 0, NE

)
+B

(
−s2; 0, NE

)]
p1 (s ; H1) = |s| ·

[
B

(
s2;

A2

σ2
, NE

)
+B

(
−s2;

A2

σ2
, NE

)]
(1.9)

Each PDF in Equation 1.9 is parametrized by the waveform SNR and the effective number
of independent data stream samples NE that appears in Equation 1.3. Because uM is zero-
padded, this leaves only LN non-zero samples in an M -sample detection window. Often,
NE � LN , however. This occurs both naturally and through processing operations like
bandpass filtering, which replace each sample with itself and a weighted sum of its neigh-
bors and thereby introduce intra-sample statistical dependence. We therefore implemented
an empirical estimator for NE , denoted N̂E , to continuously update parameterizations for
p0 (s ; H0) (see [37]). This estimator computes the sample correlation between the multi-
channel template waveform uM and several hundred psuedo-random, commensurate data
vectors drawn from non-intersecting segments of post-processed, signal sparse data within
x. The sample variance σ̂2R of the resultant correlation time series is then computed using
the 99.9% of the data by excluding 0.01% of the extreme left and right tails of its histogram.
This provides the needed statistic to estimate NE , given by:

N̂E = 1 +
1

σ̂2R
, (1.10)

and thereby compute the PDF p0 (s ; H0) and η.

In summary, each multi-channel correlation detector operates in a sliding window through
the decision rule in Equation 1.6. The threshold for target declaration is computed by pa-
rameterizing the PDF p0 (s ; H0) (Equation 1.9) by N̂E (Equation 1.10) for each respective
signature and then inverting for η (Equation 1.7).
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1.4.2 Computation of p-values

We fuse several independent correlation detection statistics into a single scalar time series
by combining their respective p-values through Fisher’s combined probability test. Given
that a detector for phenomenology k produces an observed statistic sk (tn) at time sample
tn, the respective p-value at that time sample is [35, 3]:

pk (tn) =

∫ 1

sk(tn)
pS (sk;H0) dsk, (1.11)

where pS (sk;H0) is the estimated null correlation distribution for random variable sk and
is parametrized by the data’s effective degrees of freedom N̂E (Equation 1.10). Temporally
coincident p-values are each uniformly distributed and additive over M detectors and P
signatures through a logarithmic transformation [3]. The samples of the resultant trans-
formed time series then each follow a χ2

2 distribution, while their coherent sum ZM ·P (tn)
gives the Fisher statistic:

ZM ·P (tn) , −2
M ·P∑
k=1

ln (pk (tn)) ∼ χ2
2M ·P (tn) , (1.12)

where the subscript on ZM ·P enumerates the added p-values, which are assumed to be
statistically independent. Equation 1.12 is a statement of Fisher’s combined probability
test. It illustrates that moderate p-values from several temporally coincident and inde-
pendent phenomenologies can be logarithmically superimposed to provide an anomalously
large sum ZM ·P (tn), at time tn, in the presence of signal. The significance of this sum is
determined by the cumulative right tail probability of its PDF and the associated inverse.
We compute this inverse at a fixed right-tail probability of PrFA = 10−8 to also assign a
threshold for event declaration α that is consistent with our correlation detectors:

F−1
χ2
2M·P

(
1− 10−8

)
= α (1.13)

where F−1
χ2
2M·P

(•) denotes the inverse χ2
2M ·P cumulative distribution function; our analysis

includes M = 1, P ≤ 3. While Equations 1.12 and 1.13 provides a practical framework for
combining distinct detection statistics, aspects of our data collection challenge direct fusion
of p-values. This is because both recording periods and sample rates differed substantially
between the RF and other data. Whereas the seismic and infrasound data acquisition
systems (DAS) continuously recorded at 1 msec sample rates, the associated low-band, RF
DAS recorded only 400 msec at 2 ·10−9 sec sample rates for each shot. To compare p-values
among these three phenomenologies, it is necessary to bin RF correlation statistics to 1
msec sample rates and additionally extend the RF p-values to times outside the associated
recording period. To perform binning, we implemented our RF correlation detector over
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1 msec data windows to match seismic and infrasound sample intervals, and processed all
available 500 msec data. We then computed the absolute maximum correlation value in
each of the 500 resultant, 1 msec-long time series. The mean of these maxima thereby
formed upper bounds on the expected ambient noise-correlation for times outside the RF
recording period that were coincident with the seismic and infrasound data. Cumulatively,
this procedure replaced RF correlation statistics with their maximal values in each 1 msec
bin over the 500 msec record and replaced the remaining 1000 sec with the sample mean of
the bin maxima. By applying these estimates, we intentionally overestimated the ampli-
tude of the signal-absent detection statistic to provide a high background value for noise
correlation. Our RF p-values therefore underestimate the relative difference between the
signal absent versus signal present correlation statistic and should be considered conserva-
tive. We took this approach to (1) remove any assumptions about the presence/absence
of template-similar RF signals and (2) avoid overestimating the detection capability of the
corresponding Fisher statistic. In this specific case, Equation 1.12 must be modified to
include the constant background correlation:

Z3 (tn) = −2 ln (p1 (tn))− 2 ln (p2 (tn))− p̄R ∼ χ2
4 (tn) + p̄R (1.14)

where p̄R denotes −2 ln (p̄) and p̄ is the p-value computed from the sample mean of the bin
maxima.
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1.5 Results

Section 1.5.1 summarizes results from processing each noise-contaminated record of the
4” charge explosion with a phenomenology-specific correlation detector, using template
waveforms recorded from the 8” charge explosion. Section 1.5.2 compares time series of
Fisher statistics from seismic, combined infrasound and seismic, and finally, combined
infrasound, seismic and RF data.

1.5.1 Correlation Detection Results

Figure 1.7 gives detection results computed from 1000 sec of noise-contaminated infrasound
data recorded at LOSL (top). Our infrasound correlation detector misses the waveform
triggered by the 4” cylindrical charge at a 10−8 false-alarm rate threshold and the respective
detection statistic shows spurious peaks throughout the record that exceed the explosion-
generated peak (middle). This means that lower thresholds required to correctly declare
a template match would also trigger ∼ 10 false alarms on signal clutter. We suspect these
spurious correlation values are produced by experiment preparation activity at the shot
pit. Despite such clutter, the estimated null for this correlation statistic (Equation 1.9,
bottom) provides an excellent representation of the empirical null distribution (histogram),
resulting in a relative fit error of ∼ 3%.

Figure 1.8 presents analogous detection results from seismic data recorded at LOSL over
the same 1000 sec as the infrasound data, in identical format (top). While the correla-
tion statistic peaks at the correct time, in contrast to the synchronous infrasound data,
the threshold established by our prescribed 10−8 false alarm rate is too high relative to
this peak to register a detection (middle). Our seismic data also include fewer spurious
correlation values relative to the infrasound data, as expected from the relatively narrow
empirical null distribution (bottom). We attribute this outlier-reduction to result from
the larger time-bandwidth product afforded from multiple sensor channels, which increases
the template’s effective degrees of freedom (NE , Equation 1.10). As with the infrasound
data, the estimated null distribution (black curve) for the correlation statistic provides an
excellent fit to the histogram (∼ 3% relative error).

Similar RF detection results are shown over 0.38 msec in Figure 1.9, with the remain-
der of the 500 msec omitted (top). In this case, our detector missed many of the target
pulses produced by the explosion, but also correctly identified two that matched our tem-
plate. Analysis of our RF data set revealed that each above-ground explosion generally
fans composed of 10-50 such pulses that correlated well between different shots. One such
fan-pulse was used as the template for our RF correlation detector. Consequently, single
explosions may produce several RF correlation detection opportunities, in contrast to the
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Figure 1.7: Acoustic correlation statistics computed from 1000 sec of data during the
explosion of a 4” cylindrical charge at a 4m HoB, as measured by an infrasound sensor at
station LOSL and contaminated by additive noise. Top: Noise-contaminated time series
recorded during the explosion. The vertical gray line marks the true arrival time of the
explosion waveform. Spurious signals beforehand and thereafter originate from human
activity. Middle: Correlation statistic s (x) computed from the detector template uM
and data at top. Horizontal red lines compare the threshold level η to data statistic
amplitudes; positive η is consistent with a 10−8 false alarm probability. No detections were
found. Bottom: The empirical null distribution (gray histogram) obtained by binning
s (x), compared to the predicted null distribution p0 (s ; H0) parameterized by N̂E (black
curve); the 3% relative error measures the distributional mismatch, and the red, vertical
line marks the detection threshold η.
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Figure 1.8: Seismic correlation statistics displayed in the same format as Figure 1.7, using
data recorded at LOSL. Data are similarly contaminated along each respected channel with
pre-shot background noise. As with the infrasound data, no detections were found.
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single detection opportunities provided by the coincident seismic and infrasound records.
To demonstrate the influence of these additional pulses, we simplistically assume that our
target data contain K pulses with identical amplitudes and low probability of detection, θ
= 0.16. We then compute the probability of obtaining at least two detections, as observed
in our data, from the binomial distribution:

Pr { at least 2 detections} = 1−
(
K

0

)
θ0 · (1− θ)K −

(
K

1

)
θ1 · (1− θ)K−1 . (1.15)

For K = 10, Equation 1.15 predicts approximately a 50% probability of detecting at least
two pulses (compared to 16%). Therefore, the multiplicity of template-similar emissions ef-
fectively increases the probability of detecting a given explosion, despite the comparatively
high threshold for event declaration obtained from our data. This threshold is illustrated
by the empirical null distribution for the correlation statistic, which is extremely broad
compared to that of the infrasound or seismic data (bottom). In this case, the high value
arises from relatively a small NE value that is induced by the short duration, transient RF
template. Again, the fit error between the predicted and observed null distributions are
exceptionally small (∼ 3%)

1.5.2 p-Value Fusion Results

Figure 1.10 (bottom) shows the Fisher statistic Z1 (t) computed from Equation 1.11 using
the seismic correlation time series and corresponding null distribution (Figure 1.8, bot-
tom). Like the correlation statistic, Z1 (t) also peaks at the correct waveform arrival time
for the explosion, but below the threshold imposed by the 10−8 right-tail probability con-
straint (Equation 1.13). By comparison, Figure 1.11 shows the result of fusing seismic and
infrasound data together through the Fisher statistic, Z2 (t). Whereas neither the seismic
nor infrasound correlation detectors declared a template match, the fused statistic exceeds
the respective threshold at the correct waveform arrival time and registers a detection.
We assess the validity of this detection by comparing the empirical null PDF for Z2 (t)
(Figure 1.12, blue histogram) against the predicted χ2

4 PDF (black curve) that was used
to compute the detection threshold. This comparison provided excellent agreement, and
increases our confidence in the significance of the detection. The high quality of the fit is
likely attributable to the low relative error between the observed and predicted null distri-
butions for the infrasound and seismic correlation statistics.

Figure 1.13 demonstrates the additional gain in detection capability from including the
RF correlation data through the Fisher statistic Z3 (t). Whereas the peak in Z2 (t) regis-
tering the explosion exceeds its associated threshold by 1.4 units, the peak in Z3 (t) exceeds
its identically obtained threshold by ∼ 15 units, or 10× that of Z2 (t). Figure 1.14 further
shows an excellent agreement between the empirical null distribution (blue histogram) for
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Figure 1.9: RF correlation statistics displayed in the same format as Figures 1.7 and 1.8,
with electric and magnetic data from the RF antennae displayed over a 0.38 msec window.
Data are also contaminated on each respective channel with pre-shot background noise.
Two explosion-generated pulses are correctly detected, while many are missed; one miss is
shown by the vertical gray line and triangular marker. Additional data, absent of target
pulses, are not shown.
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Z3 (t) and the shifted χ2
4 distribution predicted from theory (Equation 1.14, black curve).

This relative increase in detection power likely underestimates the true increase due to the
biased approach we adopted to compute the background, noise correlation (Section 1.4.2).

1.5.3 Statistical Influence of Wavefield Coupling

Our computation of Z2 (t) neglected any dependency between seismic and infrasound data
that was expected from physical coupling of the two wavefields at the ground surface (Figure
1.3 ) [2, 24]. Such coupling violates assumptions of independence on each signature’s
respective p-values, and artificially inflates the significance of the Fisher statistic [27]. We
therefore assessed the potential correlation between the seismic and infrasound detection
statistics by computing cross-correlograms between thousands of 1 second windows (e.g.,
correlations of correlation). We limited the correlation time-lags between the seismic and
acoustic statistics from 0 to ±4 seconds so that only potentially related portions of the
signals were compared. This produced a sample set of high variance, near zero-mean
correlation values (Figure 1.15). The absence of a significant non-zero mean suggests
that the noise-contaminated seismic and infrasound correlation detection statistics were
effectively independent. We had no analogous concern about seismic-RF or acoustic-RF
wavefield dependency.
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Figure 1.10: Top: The three channels of noise-contaminated seismic data recorded over
1000 sec at LOSL. The vertical gray line indicates the true seismic waveform arrival time.
Bottom: The Fisher statistic time series Z (t) = −2 ln (p (t)) computed from the respec-
tive null p0 (s ; H0), parameterized by N̂E (Figure 1.8, bottom). The horizontal red line
indicates the inverse 10−8 right tail probability.
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Figure 1.11: Top: Noise-contaminated seismic (blue) and infrasound data (red) recorded
over 1000 sec at LOSL. The vertical gray line indicates the true waveform arrival times.
Bottom: The Fisher statistic time series Z (t) computed by adding −2 ln (p (t)) from the
respective infrasound (Figure 1.7) and seismic data (Figure 1.8). The horizontal red line
indicates the inverse 10−8 right tail probability. The filled, red circle marks a detection
at the correct explosion time. Neither the infrasound nor seismic correlation detectors
identified this explosion.
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Figure 1.12: The empirical distribution for Z (t) using seismic and infrasound data (his-
togram, blue) and the predicted distribution (black curve). The vertical red line indicates
the inverse 10−8 right tail probability, and the red circle marks the peak detection value
that corresponds with Figure 1.11.
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Figure 1.13: Top: Same as the top of Figure 1.11, with a square marker added to indicate
explosion time and burst of RF emissions. Middle: The 0.38 msec of RF data from
Figure 1.9 that includes known target pulses. Bottom: Similar to Figure 1.11, with Z (t)
computed from all three signatures. The peak detected at the correct event time exceeds
that shown in Figure 1.11, relative to the background values.
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Figure 1.14: Similar to Figure 1.12, but data shown here include contributions from the RF
p-values. The predicted distribution is additionally shifted by the mean, absolute maxima
in correlation values that are computed over 500, 1 msec windows (p̄R, Equation 1.14).
The detected peak in Z (t) at the correct event time exceeds the threshold (vertical red
line) by ∼ 15× more than that shown in Figure 1.12

.
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Figure 1.15: A histogram of cross correlation values computed between 1 second windows
of infrasound and seismic correlation detection statistics, limited to 4 second relative time
lags. The zero sample mean indicates a small or absent inter-signature correlation.
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1.6 Discussion and Conclusions

We show that explosions undeclared by correlation detectors are identifiable when their
respective detection statistics are fused through Fisher’s combined probability test. Fur-
ther, because these correlation detectors maximize the probability of registering known
waveforms in Gaussian noise, our result also applies to STA/LTA, subspace, and other
estimator-detectors [20]. Consequently, these alternative detectors would almost certainly
fail to identify explosion-triggered waveforms in the same noise environment, and at higher
false alarm rates. By combining their statistics with correlation values, however, they
would likely contribute to further increase in overall detection capability and could be used
to identify even smaller explosive sources [3]. In principle, such capability increase is pre-
dictable by comparing receiver operating characteristic (ROC) curves for each detector.
However, more research is required to determine the Fisher statistic’s distribution under
the signal-present hypothesis to compute the associated ROC curves [19].

Fusing only two of the available correlation statistics still provided a gain in detection
capability over single signatures. While our results were derived from local source standoff
distances, the improvement obtained by combining seismic and acoustic data (Figure 1.11)
is potentially significant to test-ban treaty verification missions. In these cases, networks of
seismic and infrasound sensors, like those making up the International Monitoring System
(IMS), are used to surveil evasively conducted nuclear tests in near-real time [11, 14]. Such
networks often include collocated, three component seismic and infrasound sensors, similar
to those deployed at LOSL. Fusing the statistics computed from such collocated receiver
data can ostensibly increase a monitoring agency’s capability to identify weak detonation
signals, even absent single-signature detections.

Whereas there are several examples of prior seismo-acoustic analysis of surface explosions
[1, 26, 25, 24], little open research exists on combining such data with electromagnetic
signals [32, 18]. Our work suggests that the addition of RF and seismo-acoustic correlation
statistics through data fusion can provide a significant improvement to explosion detection
operations (Figure 1.13 versus Figure 1.11). This is partially due to the fidelity provided by
RF emissions. Whereas explosively-triggered seismic waveforms at local distances consist of
overlapping body, surface, and air waves (e.g., Figure 1.3), our explosion-triggered RF data
exhibit fans comprised of ∼10-50 well-separated, similarly shaped transient pulses (Figure
1.2). We further found that pulses within such fans were often highly correlated against
pulses within other fans that were triggered by different explosions. The multiplicity of
these RF pulses implies that the probability of detecting at least one can be significant,
even if the probability of detecting a single pulse is not. Including these features as tem-
plates in correlation detectors thereby increases the chance of explosion identification. In
contrast, these pulses poorly correlated with ambient RF noise and registered no false
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alarms, although our analysis was limited to 68, ∼400 msec shot records.

We suggest that co-deploying RF antennae at seismic/infrasound sites can lead to signifi-
cant improvements in explosion monitoring capabilities, at least at local standoff distances.
For such operations to be practical, the DAS will require internal triggering systems and
precise time stamping to avoid continuous recording and thereby address onerous storage
requirements at ∼ 1MHz − 1GHz sample rates. Further, because our RF antennae was
substantially closer to the source than the seismic/infrasound sensors, it is unclear if such
pulses would be observable at greater ranges. Options for detecting substantially larger
and optically-bright near-surface explosions may include integrating existent, space-borne
observations from satellites [32]. Our ongoing work includes addressing such needs and
investigating the physical mechanism of RF fan emission to determine its potential use for
explosion discrimination and identification.

Our conclusions are conditioned on analyses that presume weak explosion signatures are
representable by adding scaled (but real) noise to waveforms recorded from larger sources,
thereby reducing each signature’s noise-relative amplitude. For target and template wave-
forms produced by explosions with similar HoB, there are at least two justifications for
this claim: (1) poor instrument emplacement or signal interference can dramatically re-
duce waveform detectability of small sources, and is equivalent to adding measurement
noise as we have done [5], and (2) the impulsive source-time function of a much smaller
explosive charge dominantly scales in amplitude. We consider this first point obvious, and
concerning if deployment sites coincide with regions experiencing frequent thunderstorms
or cultural noise. Regarding the second point, a diminished signal-to-noise ratio (SNR)
is often equated to a reduction in a target event’s seismic magnitude in semi-empirical
analyses of seismic, multichannel correlation detectors [33, 34, 13]. More importantly, this
practice has shown operational success in detection repeating earthquakes spanning ∼ 3.5
seismic magnitude units [11], equivalent to waveform amplitude ranges of ∼ 3 · 103. In
this case, no spectral rescaling was required. In our work, we reduced relative seismic am-
plitudes through the addition of 10 windows of pre-shot noise, which were then amplified
by 15×. Assuming a maximum noise variance among these windows of σM , this addition
reduces noise-relative waveform amplitudes by at most σM ·15

√
10, or < 47× their original

value. This reduction is therefore within established, moderate ranges of seismic source
scaling. We emphasize that explosions with substantially different HoB will produce dis-
similar waveforms because of differences in ground coupling and Rayleigh-wave-acoustic
feedback [24]. With this caveat, similar arguments can be made for weak acoustic wave-
forms with low peak overpressure. While a lack of prior work precludes similar analysis
of RF waveforms, we found that fan-pulse amplitudes in our data spanned two orders of
magnitude among the different explosions, substantiating our scaling method.

Cumulatively, we demonstrate that multiple, fused explosion signatures can provide a su-
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perior detection capability relative to that obtained by single-signature correlation detec-
tors. Our results further show that Fisher’s combined probability test provides an effective
method for combining multiple geophysical observations. By summing such observable’s
statistics over additional independent detectors, as well as phenomenologies, even smaller
sources become identifiable [3]. We therefore propose that implementing such multiple-
signature fusion methods in routine monitoring operations can provide increased deterrence
against clandestine weapon testing.
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